Models of Set Theory II - Winter 2017/2018

Prof. Dr. Peter Koepke, Ana Njegomir Problem sheet 2

Problem 1 (6 points). Let M be a transitive and countable model of ZFC and let $\mathbb{P} \in M$ be an \aleph_1 -closed notion of forcing. Suppose that T is an ω_1 -tree in Msuch that every level of T is countable. Prove that T has no new branches in M[G].

Hint: Suppose for a contradiction that T has a branch $b \in M[G]$ which is not in M (note that b has to have length ω_1). Then there is a name \dot{b} for b and a condition $p_{\emptyset} \in G$ such that $p_{\emptyset} \Vdash \dot{b} \neq \check{a}$ for all $a \in M$. Construct by induction $p_s < p_{\emptyset}$ and nodes $x_s \in T$ for all finite sequences s of 0's and 1's in a way that $p_{s \frown 0}$ and $p_{s \frown 1}$ are both stronger than $p_s, p_{s \frown 0} \Vdash \check{x}_{s \frown 0} \in \dot{b}$ and $p_{s \frown 1} \Vdash \check{x}_{s \frown 1} \in \dot{b}$, where $x_{s \frown 0}$ and $x_{s \frown 1}$ are at the same level of T (for p_s constructed, we can find two incomparable nodes $x_{s \frown 0}$ and $x_{s \frown 1}$ such that they are both $>_T x_s$ and that they are at the same level of T, and $p_{s \frown 0}$ and $p_{s \frown 1}$ both stronger than p_s such that $p_{s \frown 0} \Vdash \check{x}_{s \frown 0} \in \dot{b}$ and $p_{s \frown 1} \Vdash \check{x}_{s \frown 1} \in \dot{b}$). Then there is a level $\alpha < \omega_1$ such that all x_s lie below that level. Show that the α th level of T has at least 2^{\aleph_0} elements (using that \mathbb{P} is an \aleph_1 -closed notion of forcing and that p_{\emptyset} forces that \dot{b} is uncountable), contrary to our assumption.

Problem 2 (2 points). Let κ be an infinite cardinal and \mathbb{P} be a κ -closed partial order. Show that $FA_{\kappa}(\mathbb{P})$ holds.

Problem 3 (2 points). Prove that $FA_{2^{\aleph_0}}(Fn(\aleph_0,\aleph_0,\aleph_0))$ is false.

Problem 4 (4 points). Suppose that M is a transitive and countable model of ZFC. Let $\mathbb{P} \in M$ be a forcing notion and let G be M-generic for \mathbb{P} . Let $[\omega]^{\omega}$ denote the set of infinite subsets of ω . For $x, y \in [\omega]^{\omega}$ we say that x splits y if both $y \cap x$ and $y \setminus x$ are in $[\omega]^{\omega}$. A set $x \in ([\omega]^{\omega})^{M[G]}$ is said to be a *splitting* real if it splits every set in $([\omega]^{\omega})^M$. Let \mathbb{C} denote Cohen forcing. Prove that \mathbb{C} adds splitting reals.

Problem 5 (6 points). Let M be a transitive and countable model of ZFC + GCH and let G be M-generic for $\operatorname{Fn}(\aleph_2^M \times \omega, 2, \aleph_0)$. Prove that in M[G] we have that $\operatorname{non}(\mathcal{N}) = \aleph_2$ and $\operatorname{add}(\mathcal{N}) = \aleph_1$.

Please hand in your solutions on Monday, October 23 before the lecture.